

Dualband SiGe-Power Amplifier for GSM 900/1800/1900

Description

The TST0911 is a monolithic dualband power amplifier IC. The device is manufactured using TEMIC Semiconductors' advanced Silicon-Germanium (SiGe) process and has been designed for use in GSM-based cellular phones.

The IC offers the functionality of two amplifiers in one package and is suited for GSM 900/1800/1900 (GSM/ DCS/ PCS) dual- or triple mobile phones. With a single supply voltage operation of 3 V and a neglectable leakage current in power-down mode, the TST0911 needs few external components.

Features

- 900-MHz amplifier and 1800/1900-MHz amplifier for dual-/tripleband application
- 35 dBm output power @ 900 MHz
 32 dBm output power @ 1800/ 1900 MHz
- Power-added efficiency (PAE) 50%
- Single supply operation at 3 V no negative supply voltage necessary

- Current consumption in power-down mode ≤ 10 μA, no external power-supply switch required
- Power-ramp control
- Mode switch
- AC-coupled input, simple input and output matching
- SMD package (PSSOP28 with heat slug)

Block Diagram

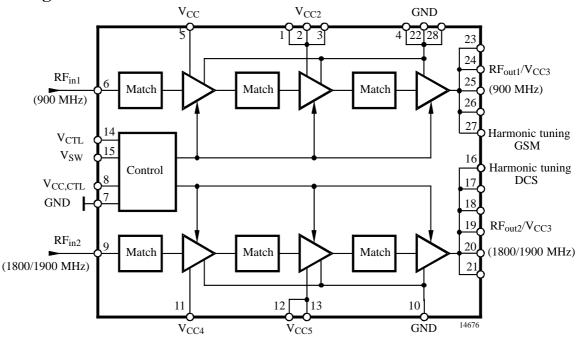


Figure 1. Block diagram

Ordering Information

_		
Extended Type Number	Package	Remarks
TST0911-M	PSSOP28	Tube
TST0911-M	PSSOP28	Taped and reeled

Rev. A1, 20-May-99

Pin Description

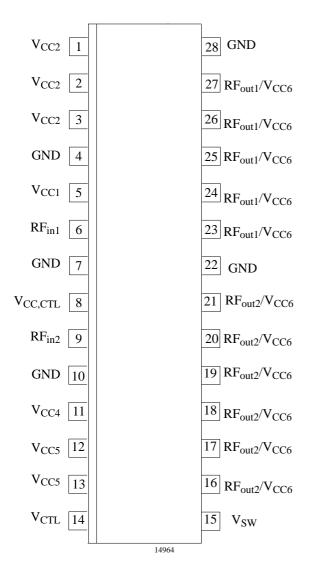


Figure 2. Pinning

Pin	Symbol	Function
1	$V_{\rm CC2}$	Supply voltage 2
2	V_{CC2}	(900-MHz amplifier)
3	V_{CC2}	
4	GND	Ground
5	V _{CC1}	Supply voltage 1 (900-MHz amplifier)
6	RF _{in1}	RF input 1 (900 MHz)
7	GND	Ground (control)
8	V _{CC,CTL}	Supply voltage for control
9	RF _{in2}	RF input 2 (1800/1900 MHz)
10	GND	Ground
11	V_{CC4}	Supply voltage 4 (1800/1900-MHz amplifier)
12	V _{CC5}	Supply voltage 5
13	V _{CC5}	(1800/1900-MHz amplifier)
14	VCTL	Control input
15	VSW	Mode switch
16	RF _{out2} /V _{CC6}	RF output 2 / harmonic tuning (1800/1900 MHz)
17	RF _{out2} /V _{CC6}	RF output 2 / supply voltage 6
18	RF _{out2} /V _{CC6}	(1800/1900 MHz)
19	RF _{out2} /V _{CC6}	
20	RF _{out2} /V _{CC6}	
21	RF _{out2} /V _{CC6}	
22	GND	Ground
23	RF _{out1} /V _{CC3}	RF output 1 / supply voltage 3
24	RF _{out1} /V _{CC3}	(900 MHz)
25	RF _{out1} /V _{CC3}	
26	RF _{out1} /V _{CC3}	
27	RF _{out1} /V _{CC3}	RF output 1 / harmonic tuning (900 MHz)
28	GND	Ground

Absolute Maximum Ratings

All voltages are referred to GND

Pa	rameter	Symbol	Min.	Typ.	Max.	Unit
Supply voltage V _{CC}	Pins 1, 2, 3, 5, 11, 12, 13, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26 and 27 Pin 8	V _{CC1} , V _{CC2} V _{CC3} , V _{CC4} V _{CC5} , V _{CC6} V _{CC} , CTL			5.0	V
Input power	Pin 6 (GSM) Pin 9 (DCS/PCS)	P _{in}			13 8	dBm dBm
Gain-control voltage	Pin 14	V _{CTL}	0		2.2	V
Duty cycle for operation					25	%
Burst duration		t _{burst}			1.2	ms
External voltage for mode switch Pin 16		V_{SW}	0		V _{CC}	V
Junction temperature		T _i			+ 150	°C
Storage temperature		T _{stg}	- 40		+150	°C

Thermal Resistance

Parameters	Symbol	Value	Unit
Junction ambient	R_{thJA}	t.b.d.	K/W

Operating Range

All voltages are referred to GND

Parameter	Symbol	Min.	Тур.	Max.	Unit
Supply voltage	V_{CC}	2.4	3.5	4.5	V
Ambient temperature	T _{amb}	- 25		+ 85	°C
Input frequency	f _{in} (Pin 6)		900		MHz
	f _{in} (Pin 9)		1800/1900		MHz

TST0911

Electrical Characteristics

Test conditions: $V_{CC} = V_{CC1}$ to V_{CC6} , V_{CC} , $C_{TL} = +3.5$ V, $V_{CTL} = 1.5$ V, $V_{amb} = +25$ °C, $t_{burst} = 0.577$ ms, $t_{period} = 4.615$ ms (see application circuit)

Parameters	Test Conditions / Pins	Symbol	Min.	Тур.	Max.	Unit
Power supply						
Supply voltage		V_{CC}	2.7	3.5	4.5	V
Current consumption	Active mode P _{out} = 34.5 dBm, PAE = 50% P _{out} = 32.5 dBm, PAE = 42%	I		1.7 1.13		A A
Current consumption	Power-down mode	I			10	μΑ
(leakage current)	$V_{CTL} \le 0.2 \text{ V}$					
900-MHz amplifier (GSM)						
Frequency range		f _{in}	880	900	915	MHz
Input impedance *)		Zi		50		Ω
Output impedance		Zo		50		Ω
Output power	$P_{in} = 3 \text{ dBm}, R_L = RG = 50 \Omega$ $V_{CC} = 3.5 \text{ V}, T_{amb} = +25^{\circ}\text{C}$ $V_{CC} = 2.7 \text{ V}, T_{amb} = +85^{\circ}\text{C}$	P _{out}	34.3 32.0	34.8 33.0		dBm dBm
Minimum output power	$V_{CTL} = 0.3 \text{ V}$	P _{out}		- 20		dBm
Input power		P _{in}		0	10	dBm
Power-added efficiency	$V_{CC} = 3 \text{ V}, P_{out} = 28 \text{ dBm}$ $V_{CC} = 3 \text{ V}, P_{out} = 30 \text{ dBm}$ $V_{CC} = 3 \text{ V}, P_{out} = 33.5 \text{ dBm}$	PAE	25 35 50			%
Input VSWR *)	$P_{in} = 0 \text{ to } 10 \text{ dBm}, P_{out} = 34.5 \text{ dBm}$	VSWR			2:1	
Stability	$T_{amb} = -25 \text{ to} + 85 \text{ °C}$ no spurious $\geq -60 \text{ dBc}$	VSWR			10:1	
Load mismatch (stable, no damage)	P _{out} = 34.5 dBm, all phases	VSWR			10:1	
Second harmonic distortion		2fo			-35	dBc
Third harmonic distortion		3fo			-35	dBc
Noise power	$P_{out} = 34 \text{ dBm}, RBW = 100 \text{ kHz}$ f = 925 to 935 MHz $f \ge 935 \text{ MHz}$				- 70 - 82	dBm dBm
Isolation between input and output	$P_{in} = 0$ to 10 dBm, $V_{CTL} \le 0.2$ V (power down)		50			dB
Isolation between GSM input and DCS/PCS output	DCS/PCS powered down, P _{in} = 10 dBm		50			dB
Control curve	see figure 3 (t.b.d.)					
Rise and fall time		t _r , t _f			0.5	μs
Output power versus input power	see figure 1 (t.b.d.)					
Power control range			60			dB
Control voltage range		V _{CTL}	0.5		2.5	V
Control current, assuming that only GSM amplifier at a time is turned on	$P_{in} = 0 \text{ to } 10 \text{ dBm},$ $V_{CTL} = 0 \text{ to } 2.0 \text{ V}$	I _{CTL}			200	μА

^{*)} with external matching (see application circuit)

Electrical Characteristics (continued)

Parameters	Test Conditions / Pins	Symbol	Min.	Тур.	Max.	Unit
Power control	Power control					
Control curve slope	$P_{out} \ge 25 \text{ dBm}$				150	dB/V
Power-control range	$V_{CTRL} = 0.3 \text{ to } 2.0 \text{ V}$		50			dB
Control-voltage range		V _{CTL}	0.3		2.0	V
Control current	$P_{in} = 0$ to 10 dBm,					
	$V_{CTL} = 0$ to 2.0 V	I _{CTL}			200	μΑ
1800/1900-MHz amplifier	(DCS/PCS)					
Frequency range	DCS	f _{in}	1710		1785	MHz
	PCS		1850		1910	MHz
Input impedance *)		Z _i		50		Ω
Output impedance		Z _o		50		Ω
Output power	$P_{in} = 3 \text{ dBm}, R_L = R_G = 50 \Omega$					
	$V_{CC} = +3.5 \text{ V}, T_{amb} = +25^{\circ}\text{C}$	Pout	31.7	32.0		dBm
	$V_{CC} = +2.7 \text{ V}, T_{amb} = +85 ^{\circ}\text{C}$		30.0	30.5		dBm
Minimum output power	$V_{CTL} = 0.3 \text{ V}$			- 20		dBm
Input power		P _{in}		0	6	dBm
Power-added efficiency	$V_{CC} = +3 \text{ V}, P_{out} = 26 \text{ dBm}$	PAE	25			
at P _{out, max}	$V_{CC} = +3 \text{ V}, P_{out} = 28 \text{ dBm}$		35			%
I (MOMD #)	$V_{CC} = +3 \text{ V}, P_{out} = 31.5 \text{ dBm}$	MOMB	42		2 1	
Input VSWR *)	$P_{in} = 0 \text{ to } 6 \text{ dBm}, P_{out} = 31.5 \text{ dBm}$	VSWR			2:1	
Stability	$T_{amb} = -25 \text{ to} + 85^{\circ}\text{C}$	VSWR			10:1	
Load mismatch	$P_{out} = 31.5 \text{ dBm}$	VSWR			10:1	
stable, no damage	all phases	IM2			25	JD.
Second harmonic distortion		IM2			-35 25	dBc
Third harmonic distortion	D 21.5 ID DDW 100111	IM3			-35	dBc
Noise power	$P_{out} = 31.5 \text{ dBm}, RBW = 100 \text{ kHz}$ f = 1805–1880 MHz (DCS)				-71	dBm
	f = 1930–1990 MHz (PCS)				- 71 - 71	dBm
Isolation between input	$P_{in} = 0 \text{ to 6 dBm},$		48		/1	dB
and output	$V_{\text{CTL}} \le 0.2 \text{ V (power down)}$		40			d D
Isolation between DCS/	GSM powered down,		50			dB
PCS input and GSM output	$P_{in} = 6 \text{ dBm}$					
Control curve slope	m.				150	dB/V
Rise and fall time		t _r , t _f			0.5	μs
Power control range		17 1	50			dB
Control voltage range		V _{CTL}	0.5		2.5	V
Control current, assuming	$P_{in} = 0$ to 6 dBm,	1 211				
that only DCS/PCS ampli-	$V_{CTL} = 0$ to 2.2 V	I _{CTL}			200	μΑ
fier at a time is turned on						
Mode switch						
Switching voltage	900-MHz amplifier active	V _{sw}	V _{CC} -0.3		V _{CC}	V
	1800/1900-MHz amplifier active		0		0.3	V
Switching current	$V_{SW} = V_{CC}$	I_{sw}			200	μΑ

^{*)} with external matching (see application circuit)

Application Circuit

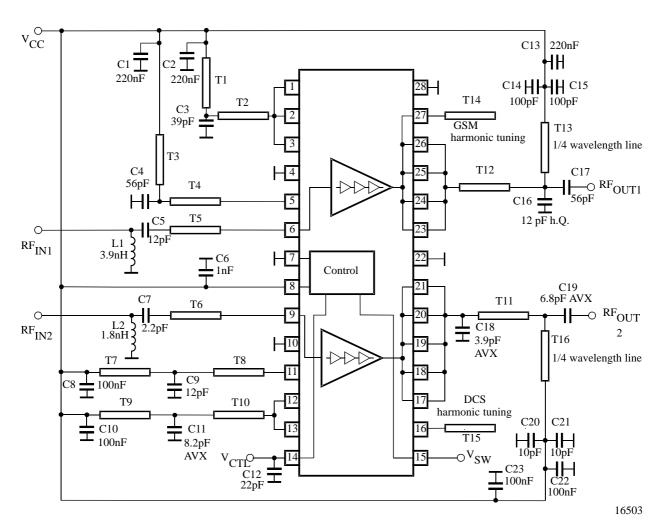
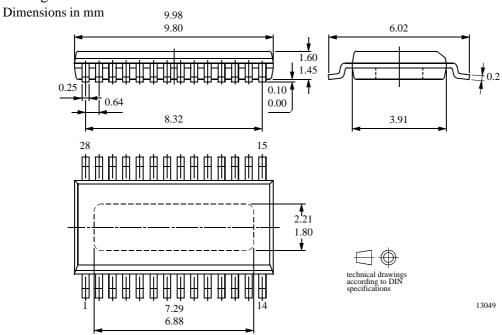


Figure 3. Application circuit

All components Tx are microstrip lines: FR4, epsilon(r) = 4.3, metal: Cu 3.5 μ m; Distance: 1. layer to RF ground = 0.5 mm


Name	l/ mm	w/ mm	
T1	21.8	0.5	
T2	2.0	1.4	
Т3	37.9	0.5	
T4	10.8	0.5	
T5	2.6	1.0	$+0.8 \times 0.5$
Т6	1.6	1.0	$+1.6 \times 0.5$
Т7	31.8	0.2	
Т8	4.5	0.2	

Name	1/ mm	w/ mm
T9	47.8	1.0
T10	1.7	0.5
T11	5.8	1.8
T12	8.6	1.6
T13	29.2	0.5
T14	19.6	0.2
T15	11.2	0.2
T16	29.3	0.2

Package Information

Package PSSOP28

TST0911

Ozone Depleting Substances Policy Statement

It is the policy of **TEMIC Semiconductor GmbH** to

- 1. Meet all present and future national and international statutory requirements.
- 2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment.

It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs).

The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances.

TEMIC Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents.

- 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
- 2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA
- 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.

TEMIC Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances.

We reserve the right to make changes to improve technical design and may do so without further notice.

Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use TEMIC Semiconductors products for any unintended or unauthorized application, the buyer shall indemnify TEMIC Semiconductors against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use.

TEMIC Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany Telephone: 49 (0)7131 67 2594, Fax number: 49 (0)7131 67 2423